non-abelian, supersoluble, monomial
Aliases: C32⋊C6⋊C4, C3⋊S3⋊Dic3, He3⋊2(C2×C4), (C3×C6).2D6, C6.17(S32), C3⋊Dic3⋊1S3, C32⋊1(C4×S3), C32⋊(C2×Dic3), C32⋊C12⋊2C2, He3⋊3C4⋊2C2, C3.2(S3×Dic3), C2.1(C32⋊D6), (C2×He3).2C22, (C2×C3⋊S3).S3, (C2×C32⋊C6).C2, SmallGroup(216,34)
Series: Derived ►Chief ►Lower central ►Upper central
| He3 — C32⋊C6⋊C4 |
Generators and relations for C32⋊C6⋊C4
G = < a,b,c,d | a3=b3=c6=d4=1, dad-1=ab=ba, cac-1=a-1b-1, cbc-1=dbd-1=b-1, dcd-1=c-1 >
Subgroups: 282 in 62 conjugacy classes, 20 normal (16 characteristic)
C1, C2, C2 [×2], C3, C3 [×3], C4 [×2], C22, S3 [×4], C6, C6 [×5], C2×C4, C32 [×2], C32, Dic3 [×5], C12 [×2], D6 [×2], C2×C6, C3×S3 [×2], C3⋊S3 [×2], C3×C6 [×2], C3×C6, C4×S3 [×2], C2×Dic3, He3, C3×Dic3 [×4], C3⋊Dic3, S3×C6, C2×C3⋊S3, C32⋊C6 [×2], C2×He3, S3×Dic3, C6.D6, C32⋊C12, He3⋊3C4, C2×C32⋊C6, C32⋊C6⋊C4
Quotients: C1, C2 [×3], C4 [×2], C22, S3 [×2], C2×C4, Dic3 [×2], D6 [×2], C4×S3, C2×Dic3, S32, S3×Dic3, C32⋊D6, C32⋊C6⋊C4
Character table of C32⋊C6⋊C4
| class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | |
| size | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 9 | 9 | 9 | 9 | 2 | 6 | 6 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
| ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
| ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
| ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
| ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | 1 | -1 | -i | i | -i | i | linear of order 4 |
| ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
| ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
| ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | 1 | -1 | i | -i | i | -i | linear of order 4 |
| ρ9 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2 | 0 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
| ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
| ρ11 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
| ρ12 | 2 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
| ρ13 | 2 | -2 | -2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
| ρ14 | 2 | -2 | 2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
| ρ15 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | 2i | 0 | -2i | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -i | i | complex lifted from C4×S3 |
| ρ16 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | 0 | -2i | 0 | 2i | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | i | -i | complex lifted from C4×S3 |
| ρ17 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
| ρ18 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Dic3, Schur index 2 |
| ρ19 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | orthogonal lifted from C32⋊D6 |
| ρ20 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from C32⋊D6 |
| ρ21 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 3 | 0 | 0 | 0 | 0 | 0 | i | -i | 0 | 0 | complex faithful |
| ρ22 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -i | i | 0 | 0 | complex faithful |
(1 28 19)(2 29 20)(4 22 25)(5 23 26)(7 17 32)(8 18 33)(10 35 14)(11 36 15)
(1 28 19)(2 20 29)(3 30 21)(4 22 25)(5 26 23)(6 24 27)(7 17 32)(8 33 18)(9 13 34)(10 35 14)(11 15 36)(12 31 16)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 10 4 7)(2 9 5 12)(3 8 6 11)(13 23 31 29)(14 22 32 28)(15 21 33 27)(16 20 34 26)(17 19 35 25)(18 24 36 30)
G:=sub<Sym(36)| (1,28,19)(2,29,20)(4,22,25)(5,23,26)(7,17,32)(8,18,33)(10,35,14)(11,36,15), (1,28,19)(2,20,29)(3,30,21)(4,22,25)(5,26,23)(6,24,27)(7,17,32)(8,33,18)(9,13,34)(10,35,14)(11,15,36)(12,31,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,10,4,7)(2,9,5,12)(3,8,6,11)(13,23,31,29)(14,22,32,28)(15,21,33,27)(16,20,34,26)(17,19,35,25)(18,24,36,30)>;
G:=Group( (1,28,19)(2,29,20)(4,22,25)(5,23,26)(7,17,32)(8,18,33)(10,35,14)(11,36,15), (1,28,19)(2,20,29)(3,30,21)(4,22,25)(5,26,23)(6,24,27)(7,17,32)(8,33,18)(9,13,34)(10,35,14)(11,15,36)(12,31,16), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,10,4,7)(2,9,5,12)(3,8,6,11)(13,23,31,29)(14,22,32,28)(15,21,33,27)(16,20,34,26)(17,19,35,25)(18,24,36,30) );
G=PermutationGroup([(1,28,19),(2,29,20),(4,22,25),(5,23,26),(7,17,32),(8,18,33),(10,35,14),(11,36,15)], [(1,28,19),(2,20,29),(3,30,21),(4,22,25),(5,26,23),(6,24,27),(7,17,32),(8,33,18),(9,13,34),(10,35,14),(11,15,36),(12,31,16)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,10,4,7),(2,9,5,12),(3,8,6,11),(13,23,31,29),(14,22,32,28),(15,21,33,27),(16,20,34,26),(17,19,35,25),(18,24,36,30)])
Matrix representation of C32⋊C6⋊C4 ►in GL6(𝔽13)
| 12 | 1 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 12 |
| 0 | 0 | 0 | 0 | 1 | 12 |
| 12 | 1 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 12 | 1 | 0 | 0 |
| 0 | 0 | 12 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 12 | 1 |
| 0 | 0 | 0 | 0 | 12 | 0 |
| 0 | 0 | 0 | 12 | 0 | 0 |
| 0 | 0 | 12 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 12 |
| 0 | 0 | 0 | 0 | 12 | 0 |
| 0 | 12 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 |
| 0 | 8 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 8 |
| 0 | 0 | 0 | 0 | 8 | 0 |
| 0 | 0 | 0 | 8 | 0 | 0 |
| 0 | 0 | 8 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,0,0,0,0,12,0,0,0,0,12,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8,0,0,0] >;
C32⋊C6⋊C4 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_6\rtimes C_4
% in TeX
G:=Group("C3^2:C6:C4"); // GroupNames label
G:=SmallGroup(216,34);
// by ID
G=gap.SmallGroup(216,34);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,31,201,1444,382,5189,2603]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^6=d^4=1,d*a*d^-1=a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations